可充锂离子电芯可靠性测试报告
锂离子电池主要由负极材料、电解液和正极材料组成。负极材料石墨在充电态时化学活性接近金属锂,在高温下表面的SEI膜分解,嵌入石墨的锂离子与电解液、黏结剂聚偏二氟乙烯会发生反应放出大量热。
01、热冲击
以CTIA 关于符合IEEE1725标准的认证程序为例,其中与热冲击有关的条款:
Section 4.2:
Test Procedure: 5 cells at 80% +/- 5%SOC to be placed in oven atambient temperature. The oven temperature shall be ramped at 5 ±2°C per minute to 150 ± 2°C. After 10 minutes at 150 ± 2°C, thetest is complete.
Compliance: No fire, smoke, explosion or breaching of the cellis allowed within t he first 10 minutes. Venting is permitted.
Test Procedure:
Test Procedure: 5 fully charged cells (per cell manufacture'sspecifications) shall be suspended (no heat transfer allowed tonon-integral cell components) in a gravity convection orcirculating air oven at ambient temperature. The oven temperatureshall be ramped at 5 ± 2°C per minute to 130 ± 2°C. After 1 hour at130 ± 2°C, the test is ended.
Compliance:Cells shall not flame or explode when exposed to130°C for 1h.
热冲击项目分析:
目前标准中热冲击项目要求不尽相同,zui常见的是热冲击到130°C并保持1小时。其它的要求如:130°C /0.5h,150°C/10min,150°C /0.5h。 其中150°C /0.5h热冲击条件zui常出现失效的情况。
02、失效原因分析
在热冲击测试过程中(如150℃),只有内部烘箱的热能、电池内部的活性物质的内能,以及贮存在锂离子电池中的电能。是150°C的烘箱温度也不会达到处于满充状态的电池中活性物质的着火点。那么很显然电池失效的原因为电池内部物质电能或者是内能的释放。足够多的热量被释放出来后,将引起电池内部剧烈的化学反应,zui后将导致被测物而失效(Fail)。
在本测试中,电池本身热量产生的来源有以下几种可能:
1)外部烘箱的热量传递;
2)阳极化学反应的放热;
3)阴极化学反应的放热;
4)隔膜在高温下收缩或融化,导致阴阳极短路而释放出热量。
如果阳极材料的热稳定性差,高温下SEI膜分解反应强烈,则阳极在达到150℃后温度会继续上升,并且热失控而放出大量热。
如果阴极材料的热稳定性差,高温下其和电解液起反应(起始温度约150℃)所放出的热量不断积累后zui终使电池内部温度达到热失控而大量放热,此时发生此现象通常是在达到150℃后的10~15分钟左右。
锂电池所有隔膜由于原料和工艺的不同,它的热稳定性也有所不同。聚丙烯(PP)材料的隔膜熔点在160℃左右,聚乙烯(PE)材料的隔膜熔点在130℃左右,多层隔膜的熔点与其组成成分有关系。当整个电池做150℃热冲击测试时,可以通过上面的原理进行分析。
03、解决方案建议
如果出现热冲击测试失效,根据上述描述确定了电池的主要发热源后,可以采用热稳定性更高的材料来优化或者改变设计比例方式,使电极在满充状态时处于比较稳定的电压状态。
在锂离子电池的安全检测项目中,每个检测项目都模拟了一种有可能发生的误(滥)用情况。如过充电测试模拟的是保护IC失效的情况。由于模拟的情况不同,锂离子电池各个安全测试项目的难度显然是不同的。根据检测经验,过充电、150℃热冲击、针刺、挤压、高温短路、重物冲击等是经常发生失效的项目。
锂电池过充电项目
(一)目前对应普通锂电池的:
以IEC62133标准及目前普通锂电池的国内行业标准为例,其中与过充电有关的条款如下:
Section 4.3.9 of IEC 62133:2002
测试流程: The cell is discharged as described in IEC 61960,then charged from a power supply of ≥10 V, at the charging currentIrec, recommended by the manufacturer, for 2,5 C5/Irec h.
测试判据:No fire, no explosion.
(二)目前对应普通锂电池的国内行业标准:
测试流程:电池充满电,之后以3C5A充电,直至电池电压为4.6V/4.8V5V,电流降至接近0A。试验直到电池出现起火、爆炸,或电池表面温度降到比峰值低10℃,结束试验。
测试判据:不起火、不爆炸
(三)标准分析:
对于终端用户来讲,由于所使用的均是带有保护IC的 BatteryPack,正常情况下会有过充电保护,从而阻止电池过度充电。但如果保护IC异常失效,则电芯承受一定过充电能力就显得重要了,目前次品充电器和次品BatteryPack在市场上泛滥,对消费者来说这也增加了电池被过充电的可能性和危险性。 现阶段对于普通电子产品锂电芯而言,zui通用的过充电标准是3C/4.6V或3C/4.8V,但也有更为严格的要求如3C/5.0V、1C/10V、1C/12V、3C/10V等,这些严格的要求就需要通过优化设计或更改材料来达到了。
(四)失效原因分析:
通过对过充后而未起火爆炸的电芯进行解剖观察,通常我们可以发现如下事实:
① 内部有少量的气体生成;
② 负极呈现金黄色至微红色,之后迅速变白色。放入水中,有非常剧烈的反应;
③ 正极呈现灰色;
④ 集流体Al箔和Cu箔没有明显的变化;
⑤ 通过DSC等手段,可发现隔膜也没有发生明显的变化;
通过锂电池的充放电机理及实际过充现象的分析我们知道在过充电时,过量的锂离子从正极脱出,嵌入或沉积到电池负极上,使得两个电极的热稳定性变差,正极倾向于分解并释放化学能会产生大量的热,释放出氧气能够催化电解液的分解。当温度足够高时,将引起负极的化学反应,负极上沉积的活性金属锂与溶剂反应后放热,使化学能转换为热能,电池的温度将由此迅速升高,zui终导致热失控而发生危险事故。
锂电池过充状态下的电流率也是影响电池过充性能的重要因素,尤其是高容量电池更是如此。这主要是由于电池中的锂与电池负极中的石墨碳形成LiC6n化合物,其的反应速度是一定的。在小电流充电时,不会形成锂原子堆积,比较安全。在大电流时形成锂原子速度会比形成LiC6n速度快,在此情况下会造成锂原子堆积,电池易产生负反应或形成锂枝晶,从而导致放出大量的热量而产生危险。
电池容量的大小会影响电芯的产热、散热速率,同样也是一个影响电池过充性能的重要因素。在相同的化学体系下,低容量电池过充性能会优于高容量电池,这也是为什么高容量锂电池相对不安全的原因之一。
(五)解决方案建议:
根据上述失效分析,我们可以有针对性的采用热稳定性更好的材料(如有过充添加剂的电解液,在过充电时添加剂聚合,增加电池内阻,以降低发热量)来增加防过充性能,减小体密度在一定程度上也可以优化过充性能。对于终端电子产品设计者及使用者来讲,应尽量避免使电池大电流充电。